Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 43(4): 1920-1929, 2022 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-35393815

RESUMO

In order to better understand the water cycle processes in Baiyangdian Lake, samples for precipitation, river water, lake water, and groundwater were collected in 2020 via the analysis of oxygen and hydrogen isotopes and the total dissolved solids. A combined approach including correlation analysis, end-member modeling, and evaporation modeling was used to identify hydrogen and oxygen isotopic characteristics of different water types and their indicative significance to evaporation, hydrodynamics, and lake-groundwater interactions. The results showed that the compositions of hydrogen and oxygen isotopes in surface water and groundwater differed from each other. The average values of δD and δ18O were the highest in samples from lake water in June, secondary for lake water in October, and the lightest in groundwater. The slope of the lake water line was lower than that of the local meteoric water line, which could be attributed to a greater evaporative enrichment in lake water. The water loss ratio was estimated to be 18.8%-42.3% in June and 2.7%-30.3% in October by applying an evaporation model using deuterium excess. Lake water isotopes exhibited highly spatial heterogeneity, which indicated that Baiyangdian Lake was a poor-mixed lake controlled by the complex hydrodynamic conditions. The values of δD and δ18O were lighter around the estuary area and higher in the district far from the estuary. Although the main water isotopes in areas such as channels had a short residence time, the spatial differences in lake water isotopes were not remarkable, which suggested that the well-mixed conditions of the lake water contributed to reducing the heterogeneity of the lake water isotopic compositions on a spatial scale. The contribution ratios of lake leakage to groundwater were 0-91.7% and varied spatially. It had a negative relationship with the buried depth of groundwater and the distance to the lakeshore. No obvious relationship was found between lake leakage magnitude and groundwater level gradient. This study could provide a theoretical basis and technical support for the sustainable development of water resources and ecological environment protection in Baiyangdian Lake.


Assuntos
Água Subterrânea , Lagos , Monitoramento Ambiental/métodos , Hidrogênio/análise , Lagos/análise , Oxigênio/análise , Isótopos de Oxigênio/análise , Água/análise
2.
Huan Jing Ke Xue ; 39(9): 4132-4141, 2018 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-30188054

RESUMO

In order to discern temporal variations, sources, and controlling factors of river water chemistry in the Malian River Basin, time series samples were collected from the Yuluoping hydrological station in 2016. The compositions of major cations and anions were analyzed and a forward model was used to calculate the weathering rates of evaporite, silicate, and carbonate. Results showed that river water was brackish with average total dissolved solids of 1154.0 mg·L-1, indicating significant differences from other main rivers in China. Na+, Ca2+, Mg2+, and SO42- were the major ions present in water, with mean concentrations of 202.8, 86.0, 78.6, and 431.2 mg·L-1 respectively. Water chemistry exhibited distinct seasonal variations, with major ions gradually declining during the pre-monsoon period and increasing in the post-monsoon period. An abrupt rise in concentrations of major ions during the ice melting interval was observed, as well as a sharp drop during stormy events. Dissolved loads were mainly derived from chemical weathering, with the contribution ratios of evaporite, silicate, and carbonate being 67.1%, 13.7%, and 19.2% respectively. Chemical processes showed different responses to climate forcing, attributed to variations in mineral content in the watershed and dissolution kinetics. The dominant contribution of evaporite in the monsoon season was due to its rapid dissolution, while silicate weathering increased during the pre-monsoon period, with longer water rock interaction times when water discharge was lower. During the post-monsoon season, carbonate weathering was enhanced due to its high content in loess and due to more CO2 absorption by rain from soil. The average chemical weathering rates of evaporite, silicate, and carbonate were 30.6, 6.2, and 8.7 kg·(km2·d)-1, respectively. A strong correlation between evaporite weathering rates and river discharge was evident; a correlation was also observed between carbonate weathering rates and river discharge, indicating that water discharge played a dominant role in chemical weathering, rather than temperature or precipitation.

3.
Ying Yong Sheng Tai Xue Bao ; 20(7): 1586-90, 2009 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-19899455

RESUMO

This paper studied the soil physical properties, soil CO2, soil water and spring water chemistry in a mature forest and a shrub in Nongla of Guangxi, China, as well as the relationships between the chemistry of soil water and spring water, aimed to understand the karst effect of the soil water in Nongla epikarst dynamic system. Significant differences were observed in the soil bulk density and non-capillary porosity under forest and shrub, which affected soil water content. The fixed CO2 in soil water had a significant negative correlation with soil CO2, and the free CO2 in soil water was 0 mg x m(-3) in the forest and 5.33 x 10(3) mg x m(-3) in the shrub. In soil water and spring water, there was a negative correlation between pH and Ca2+, Mg2+, and Cl- concentrations, and a positive correlation between K+, Na+, and HCO3- concentrations and organic C content. After the eluviation of rain water, the ion concentrations in leached soil water increased greatly, and accordingly, its corrosion ability enhanced greatly. The karst process in forest environment was stable and intensive, while that in shrub environment was active but weak.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Geologia , Solo/análise , Água/química , Carbono/análise , Dióxido de Carbono/análise , China , Monitoramento Ambiental , Árvores/crescimento & desenvolvimento , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...